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We study the crystal impurity problem for the case of nearest-neighbor force-constant

changes around the defect site of body-centered and face-centered cubic crystals.

We discuss

general group-theoretical techniques for determining the dynamics of the system and alsoits

response to an external optical probe.

We provide closed-form expressions for all the nec-

essary dynamical quantities, and show that their determination only requires knowledge of the

pure-crystal density of states in cases where there are only central forces.

We apply our

results to the absorption spectra of xenon and of krypton in solid argon, to obtain good agree-

ment with the observed data.

I. INTRODUCTION

This paper is a direct continuation of an analysis
previously carried out by one of the authors.! Some
of the results presented in this work have already
been provided in Ref. 1, and we present them here
only so that this paper may be self-contained. As
well as providing some new results on the response
of an impure system to an optical probe, we have
also found what we regard as simpler derivations of
some of the results of Ref. 1. The literature on the
crystal impurity problem is expanding at an enor-
mous rate and we suspect that some of our observa-
tions have already been reported, though unknown
to us. We refer the reader to Ref. 2 and references
cited in Refs. 1 and 2 for a more comprehensive re-
view of the field. The notation we use throughout is
the same as given in Ref. 1.

For studies of the lattice dynamics of both pure
and impure crystal systems the three essential
theoretical quantities are v(w), |X%(, w? |, and
K(w). v(w) is the density of states at a frequency
w. %%, w?| is the amplitude of vibration of the
atom at site / in the lattice mode of frequency w,

and K(w) is the linear-response function of the sys-
tem to an external probe. The physical observables
of experiments such as optical absorption, MOss-
bauer effect, and neutron scattering may be ex-
pressed in terms of these quantities, and hence
their determination is paramount. In the impure
system in particular these quantities show radical
departures from their pure-crystal values, and
since we have added a source term to the pure-
crystal equations of motion, we may solve for them
using the lattice-Green’s-function technique.

All of the qualitative features of the problem,
such as the presence and properties of localized and
resonance modes, were established by a study of
the isotopic impurity. 23 Using group-theoretical
techniques which exploit the high (0,) symmetry at
the defect site, #* it is possible to extend the analy-
sis to incorporate force-constant changes as well.
Though conceptually the extension is direct, in
practice the work is laborious as there are a large
number of degrees of freedom (the coordinates of
the atoms in the near-neighbor cluster), and hence
alarge number of lattice Green’s functions are re-
quired. Since the defect displacement transforms
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like a vector it only contributes to the F,,~-mode rep-
resentations of O,. These appear three times for
the bcc crystal and four times for the fcc crystal

in the total representations of the respective clus-
ters. (These are 27 dimensional for the bce crys-
tal and 39 dimensional for the fcc crystal.) Thus
symmetry allows a block diagonalization of the rele-
vant Green’s-function matrices and reduces the
problem to treating three- or four-dimensional
matrices. These have been handled numerically
with approximations in certain cases, 58 where it is
then difficult to keep track of what is going on.

In Ref. 1 we observed that the lattice Green’s
functions are also constrained by the O, symmetry,
and we obtained relations among them. This then
enabled us to find closed analytic expressions for
v(w) and |x%(0, w?)| and determine the positions of
the localized and resonance modes for the case of
nearest-neighbor central force changes in bcc and
fcc crystals. In this work we again determine
1 x%(0, w? | by a slightly simpler method, and also
find a closed-form expression for K(w) under the
same assumptions. The relation we obtain is re-
markably simple, and as before only requires
knowledge of the pure-crystal density of states and
the force-constant ratio. For convenience we as-
semble here our results which obtain in both the bece
and fcc cases. We introduce M and A,,(00) as the
mass and force constant at the defect site, respec-
tively, and use primes to denote the changed val-

ues. We define
A=1-A](00)/A,,(00), €=1-M'/M, 1)
p(wi)=€/(1-€) - 2w/ wiy A/(1-N)], (2
S(w?) =P fw' 2 p(w'3)/(w® - o' B dw’?, (3)
T(w?) = w* [ (' ?)/(? - ' 3)Pdw’?. )

Here v(w? = v(w)/2w is the density of squared states
in the pure crystal, and we have introduced the
usually experimentally known maximum frequency
through the relation!'”

w2 = 24,,(00)/M. (5)
The condition for resonance and localized modes is!
1-p(w?S(w?)=0 (8)

and the amplitude of vibration of the defect is'

|30, )] =22 (0, w?)]
2
- 517 (3) {1-ph sAP

+[1fv(wBp(@d Y (Ta)
or

(M7>z <pz(wi)T(wi) + %

1
M
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where Eq. (7a) is valid for band modes and Eq. (7b)
is obtained in the event of a localized mode. In
Refs. 1 and 8 we also give expressions for the
change in the density of states for any w and for the
defect mean-square velocity and mean-square dis-
placement.

In this work we find the relation

K(w)~ 37N (0/wee11)* | ¥3(0, 0®)| v(w) (8)

up to a frequency-independent factor which depends
on the nature of the probe. Here we have introduced

w211 =AL(00)/M’, (9)

the cell frequency of the defect moving in an oscilla-
tor potential provided by the neighbors, i.e., a
particle in a box. We shall discuss the physics of
this cell-model limit below. Equation (8) is not just
the response of the defect but is the response of the
whole F, mode, and includes those motions of the
neighbors which contribute to the mode as well.

We have not studied the most general case of non-
central forces as well, but we suspect the results
will continue to hold apart from suitable changes in
p(w?). We hope to examine this point further in a
future publication. The plan of this paper is to
present first the general method, and then the cal-
culation in the specific cases of interest. We con-
clude with an application to the far-ir absorption
spectra of xenon and krypton impurities in solid
argon, and with a general discussion of our work.

II. GENERAL METHOD

In the harmonic approximation the equations of
motion of a 3N-dimensional crystal lattice are given
by

Z [Aasll, 1) = ™M) 84500, ) ]ugt') =0, (10)

where a=x,y, z for monatomic lattices and ! goes
from 1 to N. Here Ayg4(l, ') are the second-order
force constants, and the displacement from equi-
librium of the atom at site R(l) is given by e*“*u(l).
It is convenient to introduce the dynamical matrix®

Dos(®)= (1/M) T, Ags(0, D% R0, (11)
whose eigenvectors and eigenvalues satisfy
2 Do fK)h(K) = wf(K) ot (K) (12)

and also to introduce the pure lattice Green’s func-
tions

1 sy oo (K)oh(K)

] )= ——
gaﬂ(w, lyl ) NM l-{,j (IJ](K)—(.L)

xexp{iK-. [R()-R@®)]}. (13)

It is then easy to show that the Green’s functions
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satisfy

2B
Z}eiK RU)
K

1
2 AaB(O’ l) ga’B(w; l) ll): 6aa‘ ~
B,1 N

+Mwig ., (w;0,17), (14)

where we obtain the lattice A function A(ﬁ) on the
right-hand side. Note that Eq. (14) is an exact re-
sult for all neighbor interactions and follows from
the translational invariance of the lattice only. We
shall find that Eq. (14) is crucial when we perform
the calculations below. In Ref. 1 we calculated the
necessary relations one at a time. Using this gen-
eral relation they may be derived in a more direct
manner.

We now introduce a point impurity substitutionally
at the origin of coordinates. If we separate out the
changes in mass and force constants as a perturba-
tion

Vasll, 7)== w(M - M*)d,40(1, 0)6(Z’, 0)

+A G, 1) - ALL, 1), (15)

we may then rewrite Eq. (10) as

23 [Aqsll, 1) = MwP6,50(1, )] ug(l')

Byl

= 20 Vooll, us@). (16)
8,1’

We then solve Eq. (16) using the lattice-Green’s-
function technique. We only present the solution
schematically. We write the Lippmann-Schwinger
and Dyson equations as

U=0+GV¥=(1-G,V)! @, (17
G=Go+GoVG=(1-GyV)1G, . (18)

We continue into the complex plane to give G, a real
and imaginary part, i.e.,

Go=Gf§ +iG{ .
Then
|¥|2= |8 |2 {1/[(1 -GCEN2+ (G§V)1} ,

ImG =1/[(1 - GEV)?+ (GIV)?] G} . (19)
"Thus
ImG=|¥|%[|®|%"Gj. (20)

We now return to the site representation after this

somewhat cavalier derivation where we ignored

questions of commutation of matrices, etc., where

we have

Img, o(w; 0, 0) = (1/M) v(w?), |XEue(0, w?)|=1/MN,
(21)

for the pure crystal, so that for the impure crystal
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we introduce |x*(0, w?)| through a normal-mode ex-
pansion

uq(0) = (ﬁ/zw)l/ 22,‘, X (0, wz) [a(w) +aT(w)]’
and find
Imex(w; 0, 0)=7N V(wa) | Xz(o, wz)| . (22)

Thus we may obtain the positions of the modes using
the determinantal condition |11 -G,V|=0, and may
find [x%(0, w® | from Eq. (22). The major part of
the calculation is then merely to determine and in-
vert the matrix 1 -G,V in the F ,~-mode basis, and
by use of Eq. (14) we are able to do this analytical-
ly. We are not aware that Eq. (22) has actually
been used in the literature, though we presume it is
known somewhere. Previously there were two other
ways of obtaining |x%(0, w®)|. The authors of Ref. 3
appealed to the normalization condition

2 MO)| X0, 0| =1 (23)

and proceeded to eliminate all |¥%(, w?)| in favor of
1 x%(0, w?) | using the equations of motion. Though
easy enough for the isotopic case it is extraordinar-
ily involved in the force-constant changes case,
even using the symmetry, and has not been treated
so far. In Ref. 1 we solved the problem by working
with double-time Green’s functions. This technique
provides 2(0)) as an integral over the spectrum,
and we were able to identify |x%(0, w?)| as the inte-
grand. Thus in that approach we in fact only deter-
mine |X%(0, w%)| up to a function which may vanish
on integrating. Also that was a quantum-mechanical
derivation, and since we are dealing with oscillators
we expect that there should be a classical solution.
This is then given by Eq. (22) where we deal with
Ix%(0, w?)| at each w and not through an integral. It
is reassuring to find that the results coincide.
Equation (22) may also be generalized to find the
amplitude of vibration of the neighbors in the per-
turbed modes, though we do not treat that here.
Finally the response function is given bys’ﬁ'10

K(w)=w Im TrGQ, (24)

where @ is the perturbation due to the external
probe and the trace is taken over the requisite rep-
resentation. [We note that in fact Eq. (22) is a
special case of Eq. (24).] Thus our aim below is
to solve Eqs. (22) and (24) using the symmetry
method.

III. CALCULATION FOR BODY-CENTERED CUBIC LATTICE

The normalized threefold basis of the F,, mode is
given for the bce lattice as!!
ay=u,(0, 0, 0),
2V, =u, (1,1, 1) +u (1,1, 1) +u (1,1, 1) +2,(1, 1, 1)
+u (T, T, 1) +u, (1, T, T) +u,(1, 1, D +2,(T, 1, 1),
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day=u,(1,1,1) +u,(1,1,1) —uy(1,1,1) —u,(1,1,1)
+uy(1,1,1) = (1,1,1) -u,(1, T, 1) +4,(1,1,1)
+uy(1, T, D +u (T, 1, 1) - 0,1, T, 1) 2,1, T, T)
+uy(1,1, 1) —u,(1,1,1) —u (T, 1, T) +u(T, 1, ).

R=g,/(222) +g,,(220),
S=g¢ +gw(222) —g’,,(OZO) —g,,(ZOZ),
T=g,,(222) - 2,,(022), (26)

correcting some typing errors in Ref. 1 on the way.
Thus in the normalized basis (a,, @, @,) the matrix

25 oG, is
We introduce as in Ref. 1, o 2\/-2—g1 4g,
80=8x(000), g,1=g,,(111), g,=g,,(111), [Gole = |22, @ R (27)
Q =80+8.,(222) +£,,(200) +¢,,(022) 4g, V2R S+T
+22.,(220) + 2¢..,(020), and the matrix of V is
]
V,x(00) 2V2V,,(111) 4v,,(111)
[V, =| 22V, (111) - V,,(111) - V2v,,(111) ; (28)
4V,(111)  =V2V,(111) -V, (111) - V,,(111)

where we use V,5(111) to denote V,4(111,0). We
calculate the Green’s-function relations from Eq.
(14) and they can almost be read off from Eqs. (27)
and (28). Assuming only nearest-neighbor forces
they are

A, (00)go+84,,(111) g, +164,,(111) g,= 1 + Mwig,,
A (00) g, +A,,(111)Q + 24, (111) R = Mw?g,, (29)
A, (00)gp+A,(111)R+A,(111) (S+ T) = Mw?g,.

We make the central-force approximation as pre-

|
viously,
8V, (111)= 8V, (111) = - eMw? - V,,(00),

84,,(111) = 84,,(111) = - 4,,(00), 30)

so that Eqs. (27)-(29) may be reduced to the pa-
rameters M, A,(00), €, X, and g,. The determi-
nant |1 -GyV| is now given by

A=(1-N)(1-¢) [1-p(w?Sw)] (31)

so that A=0 gives Eq. (6). We next invert the ma-
trix 1 -G,V to obtain

1
1
1+ \Mw?(g,+2g,), - '2'7=é=?\(1 +Mwigy), -1+ Mgy
AQ=GoV)t=f| -2VZMw¥e-Ng,, 1-A+20Mw¥(1-€)g,, -V2AMwi1-€)g, (32)

—-4Mw?(€ -2\) g5,

so that

1+S(w? [1 - p(w?) +€/(1 - €)]
Mw*(1 - €)[1 - p(w?) S(w?)]

It is of course understood that in the above equation
we are referring to the complex function S(w?+ z€),
and not just the real part given in Eq. (3). Thus
using Eq. (22) we obtain Eq. (7).

For the response of the system to an external
probe, we note that the light must see the same
symmetry as the defect sees. In the case that the
absorption is due to induced dipole moments due to

G (w; 0,0)= (33)

+Mw2(€—7\)g0 ’
- V2AMwi(1-¢€)g,

S l=deAMei(l-€)g,
+Mw?(e -Ngo

I

the polarization of the neighboring atoms by the de-
fect atom, @ must have the same symmetry as that
part of V which is due to changes in the electrostat-
ic force constants. Thus for central forces,

8 -2V2 -4
2

Q= -2V2 1 V2 , (34)

oalQ

-4 V2 2

where the scale of @ is fixed by the effective charge
a®, From this it follows that
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a1 - S(w?) [20¥/wi, +€/(1 - €)]}

TrGQ= =4 00 ~AI[1 - pDs@d] 2
so that
wIm TrGQ = a*37N (w/ween))* | ¥(0, w?)| v(w)
(36)

to give Eq. (8). The simplicity of this result is due
to the fact that @ and G have the same symmetry
properties. If we have a concentration D of defects
with a refractive index » then finally (following say
Ref. 10)

_ 2r°NDa?

K(w) e

4
(—"’—) 140, 03| v(@). (37)

Weell

IV. CALCULATION FOR FACE-CENTERED
CUBIC LATTICE

The normalized fourfold basis of the F, mode is
given for the fcc lattice as!

ay=u,0, 0, 0),
2V2a,=u,(1, 1, 0) +u,(1, 1, 0) +u,(1, 0, 1)
+uy (1,0, 1) +u,(1,1, 00 +u,(T, 1, 0)
+u,(1, 0, 1) +u,(1, 0, 1),
2V20,=u,(1, 1, 0) +u,(1, T, 0) +2,(1, 0, 1) +u,(1, 0, T)
|

Vxx(oo) ZN/EV;:’:(]. 10)
Vo -
[V]e, = 2V2V,(110) -V, (110)
2VZV,(110) - V,,(110)

In the nearest-neighbor approximation the Green’s-
function relations are

A, (00)g,+84,,(110)g;+84,,(110) g,
+44,.(011)g5=1+Mw?g, ,
A, (00)g,+A,,(110)(4 + 2C') + A,,(110)B

+24, (011)H = M’ ,

- (42)
A,,(00)g;+A,,(110)B +A,,(110)(2E’ - D)

+24,.(011)K = Mw’, ,
A, (00)gs+4A, (110)H +4A,,(110)K
+A_(011)F = Mw’g, .

The quantities H, C’, E’ are different from those
used in Ref. 1 and the above equations are slightly
altered compared to their previous form. Also the
matrix G,V does not coincide with that given by

P. D. MANNHEIM AND S. S.
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—uy(1,1,0)~u,(1,1,0) - ,(T,0,1) - u,(1, 0, 1),
203=1,(0, 1,1) +u,(0, 1, 1) +2,(0, 1, 1) +,(0, T, 1). (38)
We define

£0=8:(000), g,=g,,(110),

£2=8(110), g5=g,,(011),

A =g0+8,,(020) +£,,(200) +g,,(220),

B =gw(220) + ngy(211);

D =g,(200) +£,,(020) - £,,(220) - g,

F =g,+2g,,(020) +g,,(022), (39)
C'=g3+8,,(211),

E' =g,,112) - g,,

H=g,+g,(121),

K=g,,/(211),

Thus in the normalized basis (a,, a,, a;, ;) the
matrix of G, is

£o 2V2g, 2V2g, 2g,
2vV2g, A+2C" B 2V2H
[Goley,= 2V2g, B 2E'-D 2VZK
2g5 2V2H 2V2K F
(40)
and the matrix of V is
2V2V,,(110) 2V, (011)
- V,,(110) 0 a1)
- V,(110) 0
0 - V..(011)
L

reading off from Eqs. (23) of Ref. 1. None of the
final conclusions of Ref. 1 are altered by these er-
rors, which were only due to carelessness by one
of us when he prepared the earlier paper. We make
the central-force approximation as before, so that

8V,,(110) = 8V,,(110) = - eMw?® - V,,(00),

V,.(011)=0, (43)
84,,(110)=84,,(110)= - A,,(00),
A, (011)=0.
The external perturbation is given by
8 -2V2 -2V2 0
2
Q= % 2v2 1 1 0\ (a9
-2vV2 1 1 0
0 0 0 1]

and the inverse matrix is given by
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1+ \Mw?(g,+g2) - —A—(l +Mwig) - (1+Mw?gy) 0
1182/, 272 o/» m o/»
- 2V2Mwi(€ =N g,, 1-X+Mw?€-N)g,, -Mw?(l-¢€)g,, 0
+Mw?(1-€)g, (
-1_ . 45)
AA-GV) "= N _ovEMwHe -Ng,, -AMw¥(1-€)g,, 1-A+Mw¥€ -N)gy, 0
+AMwi(1-€)g,
AMw? AMw?
—2Mw2(€-7\)g3, ——7-2=—(1—€)g3, ——-7-2r—(1—€)g3, A

Then on calculation we again obtain all the previous
results as in the bce case, which follows since the
fcce is its reciprocal lattice.
V. APPLICATION TO IMPURITY-INDUCED
ABSORPTION SPECTRA '

Some years ago Jones and Woodfine'? made an ex-
perimental study of the far-ir absorption spectra of
xenon and krypton impurities in solid argon. Their
experimental data are presented in Fig. 1. The
most interesting feature of their measurements was
that the observed spectrum of xenon in argon re-
sembled closely a phonon spectrum for pure solid
argon calculated theoretically by Grindlay and
Howard'® using a Lennard-Jones potential model.
There have since been various attempts® & 1° to fit
the experimental data, all of which involved either
unclear approximations or detailed numerical work.
Though the fits were satisfactory enough, the nature
of the approximations employed make it difficult to
say what has been learned by them. Having reduced
the problem to our simple formula of Eq. (8), we
shall now apply it to the data to obtain a clearer
physical picture of what is happening. However, in
order to do this, we need a phonon spectrum for the
pure crystal, so we first discuss what is known
theoretically and experimentally about the density
of states of solid argon.

On the experimental side there has been a study
by Randolph“ using inelastic neutron scattering.
This experiment was performed just below the

melting point at 80 °K and yielded a spectrum simi-
~ lar to that of Ref. 13 with its characteristic trans-
verse and longitudinal mode maxima. The experi-
mental cutoff was found to be wp., =64 cm™. The
calculation of Ref. 13 was a 0 °K calculation giving
a cutoff of 68.1 cm™!. In it the two parameters o
and € of the Lennard-Jones potential were deter-
mined from 0 °K measurements of the lattice spac-
ing, some elasticity constants, and the Debye fre-
quency wp. The values obtained for o and € were
then found to coincide with their gas-phase values.
Also at 0 °K the experimental wj is found to be 64. 8
cm™! after extrapolation. !* Since the Debye model
replaces the Brillouin zone by a sphere of the same
volume it must give wp < wy,,. Further, as we go
to higher temperatures the lattice expands bringing
about a reduction in forces and hence in frequen-

I
cies. Thus both the specific-heat and neutron-scat-

tering data support the slightly higher theoretical
value for the 0 °K cutoff. There is also some fur-
ther indirect evidence for this value. Recently
Mannheim and Friedmann'® have developed a theory
of the far-ir absorption spectra of diatomic mole-
cules embedded in rare-gas crystals. Using this
theory they were able to identify localized modes
seen in various experimental spectra and calculate
their positions. The localized modes were found to
be very close to the band edge and their positions
very sensitive to the value of wp,. [This follows
since p(w?) of Eq. (2) depends directly on w?,,. ]
Hence this analysis confirms the above value of
Wmax, and we shall use it below in this work.
Rather than use the somewhat old spectrum of
Grindlay and Howard, we have recalculated the den-
sity of states using a method developed by Gilat and
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FIG. 1. Curves I and II show the experimental data
taken from Ref. 12. Curve I refers to the far-ir impurity
induced absorption spectrum of 3% xenon in solid argon
at 55°K, while curve II refers to 1% krypton impurities
in solid argon at 80°K. The frequency w is plotted in
wave numbers.
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FIG. 2. Curve I is a plot of the function S(w? using
our calculated density of states for solid argon. Curve
1I shows w?v(w?) as a function of the frequency w, and
reflects the characteristic transverse- and longitudinal-
mode maxima of v(w). In both curves v(w?) is normalized
to unity.

Raubenheimer.!” We use the same Lennard-Jones
model with the same parameters as in Ref. 13.
Naturally the two calculations yield similar spec-
tra, but since we take more points in the Brillouin
zone and use a more refined technique, we have a
smoother and more accurate v(w). We present our
calculated density of states in Fig. 2 by plotting the
convenient function w?»(w? using the normalization
fv(wz) dw?=1. For reference purposes we have also
plotted the function S(w?) of Eq. (3) as calculated
from our density of states.

In order to apply Eq. (8) to the experimental data
of Ref. 12 we also need to know the changed force
ratio A. To get an estimate we have used a Len-
nard-Jones model with the empirical combining

0.21

0 10 20 30 40 50 6070 0 10 203040 50 60 70
w(cm™) w (cm™)
() Xenon in Argon +(b)
€=-2.3,x=-34
FIG. 3. (a) Plot of K(w); (b) plot of MN|x2(0, wd1,
both graphs as a function of w. Graph (a) is scaled to the
experimental data of Ref. 12. The computed values refer

to the case of xenon in argon with e=—2.3 and A=—3.4.
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laws 05=5(0, +03), €,5=(€,€,)"% This model was
reasonably successful when applied in Ref. 16. The
model then gives A== 0.9 for krypton in argon and
A =-3.4 for xenon in argon. The mass ratios we
use are €=-1.1 and € = - 2. 3, respectively, in the
two cases. As well as use the above values of A,
we have also treated X as a free parameter to be
varied, and our best fits are then obtained with the
values A = = 0. 2 for krypton in argon and A=- 2.7
for xenon in argon. In Figs. 3-6 we have plotted
the amplitude MN | x*(0, w® | and the absorption coef-
ficient K(w) for all the above cases. We have not
made any attempt to determine the scale of K(w) as
we do not have any suitable model for the effective
charge a? and have only studied the shape of the
spectra. Our calculations strictly apply only at

0 °K, whereas the experiments were performed at
55 °K for xenon impurities and at 80 °K for krypton
impurities. As we noted above, at these higher
temperatures wy,, is reduced somewhat, so our
curves should be squeezed a fraction to lower fre-
quencies before making a comparison. We do not
attach too much significance to our model estimates
for A, and note only that they give the same order
of magnitude and sign as our best-fit values. We
found that we could obtain equally satisfactory fits
for a range of \’s around the above quoted ones, as

x16°181 |,2~/\
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K@) (em™)

0.2F

0 10 20 30 40 50 60 70 010 2030 40 50 60 70
w (cm™) w (em™")
(a) Krypton in Argon (b)
e=-I1, x=-09 .
FIG. 5. MN| xz(O, w? | and K () for the case of krypton
in argon with e=—=1.1 and A=—0.9.
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FIG. 6. MN|x%(0, w?| and K (w) for the case of krypton
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the raw data are rather rough.

We regard the fitting for xenon as reasonable and
that for krypton as more than good. As we have
calculated |x%(0, w?) | we can see clearly the modu-
lating effect that the defect motion has on the ab-
sorption spectrum. For the krypton fitting with

=~0.2 we see that |X%(0, w?)| has a peak just be-
low the longitudinal-mode maximum and this is then
emphasized in K(w). At first sight it appears that
this must be a resonance mode. However, we find
that the peak frequency does not solve Eq. (6) even
approximately. As we have discussed in Ref. 1 not
all the maxima in |X%(0, w?)| need be resonance
modes, since some of them are fixed simply by the
approximate vanishing of d|x%(0, w? |/dw? which is
presumably the case here. For the xenon fitting
with A= - 2.7 we see that |x*(0, w?) | takes apprecia-
ble values for low frequencies, but is quite small
near the longitudinal-mode maximum. However,
there is an additional frequency-dependent factor
(W/Weer1)* in K(w), and this then emphasizes the
high-frequency part of the spectrum. Thus finally
we obtain an absorption spectrum similar in shape
to the density of states of the pure crystal, but we .
see that this is just a coincidence. The reason that
1%%(0, w?)| falls off for the high-frequency band
modes is because for xenon in argon there is also
a localized mode near the band edge which takes
some intensity out of the band modes. We discuss
now why this localized mode is not visible in the
spectrum.

To determine the intensity in a localized mode we
can either use Eq. (7b) directly, or appeal to the
normalization condition?

M 7] x50, w?) | v(w?) dw?=1. (46)

The integration includes both band modes and local-
ized modes as well, so that

M0, w3)| =1-M" [ =] (0, w?)| v(w?) dw?.
(47)

If we insert the two parts of Eq. (7) on either side
of Eq. (47) we of course have an identity. However,
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the resulting relation is by no means obvious, and
has been justified independently by Dawber and _
Elliott® using complex-variable techniques. Thus
using both Eqgs. (7) and (47) provides a check on the
accuracy of the numerical integrations involved in
determining |x%(0, w?)|. For the case of interest,
i.e., xXenon in argon with A =- 2.7, we find that

wz =176 cm™ with M’ |x*0, w%)| =0.27. This should
be compared to the case of HCI in argon (€=0.1,
A=-0.9), where there is a localized mode in the
same position with M’|x%(0, w%)| =0.7.® As noted
in Ref. 16, for the case of HCI in argon the longitu-
dinal-mode maximum is completely eliminated from
K(w), but for xenon in argon we see that the local-
ized mode has much less of the intensity which goes
mainly into the band modes.

Apart from the intensity, the other factor which
determines whether or not the localized mode may
be picked up in the absorption spectrum is its width.
The mode may acquire a width due to anharmonic
forces, i.e., ¢

l"(wL)“‘ 2
@,B,7,12,13
wWo,Wg

X | Xa(0, Z)|* | Xallzs @B)| 2 | xy00s, D) |2

X 0wy, - wy— ws) v(wy) v(ws), (48)

|AuB‘/(O5 lz, l3) | 2

where we have only retained the cubic anharmonic
contribution. For HCI in argon the typically re-
ported anharmonic widths were of the order of 10
cm™’. We note that the width depends not on

M’ %40, w?)1, but only on |x*(0, w2)|, so that we
may safely expect an anharmonic width for xenon in
argon of less than 1 cm™. This of course is too
small to be observable in the experiment of Ref. 12
which used a 5-cm™ spectral slit width, and we
suspect that the localized mode lies buried under
the high-frequency multiphonon tail of Fig. 1.

VI. GENERAL DISCUSSION OF THE WORK

In this work we have shown how to exploit the high
local symmetry at defect sites so as to include
force-constant changes. The closed,expressions
we have provided are simple and allow for the in-
clusion of force changes without any need to use
perturbation approximations. In particular our re-
sults for xenon in argon show specifically the in-
fluence of force changes even in the presence of a
large mass change, since if we were only to con-
sider the large mass increase we would not antici-
pate the presence of localized modes at all. Fur-
ther, the force change has a marked effect in
1x3(0, w?) |, the modulating factor in the absorption
coefficient. Though we have referred specifically
to optical absorption, our analysis of the response
function is general and may be applied in neutron-
scattering or one-phonon Mossbauer experiments
as well.
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Dawber and Elliott!® have made a study of the ab-
sorption due to a point charge in a crystal, where
the absorption coefficient is given by

K(w)~N|_x2(0, w?|v(w). (49)

This should be contrasted with our Eq. (8) which
has an additional (w/wey;)* factor. There is of
course no connection between the two calculations
as they correspond to different physical situations.
In the present case of absorption due to an induced
dipole we have to consider the composite system of
the defect and its neighbors whose total electric
charge is zero. Though Egs. (6) and (7) reduce to
the standard mass-defect equations in the limit

A -0, we note that in the present absorption case if
there were no force change there would be no effec-
tive charge and hence no absorption at all. Further,
from Newton’s third law of motion it is not possible
to change the force at the defect site without making’
a compensating change at the neighbor sites. Thus
we have to take into account the motion of the neigh-
bors as well from the very beginning, and this is
why the absorption is normalized to the cell-model
limit. It is generally supposed that the cell model
is only valid in the asymptotic limit, i.e., wen

> wnae HoOWwever, its range of applicability is in
fact much greater, and under certain conditions it
may even be valid near the band edge. % Thus the
maximum optical response is given when the defect
is moving with the most-favored frequency supplied
by its neighbors, i.e., the cell frequency.

A situation in which we do put a charge directly
into the crystal may be realized by taking nonsym-
metrical diatomic molecules (such as HCI) as de-
fects. The physical mechanism responsible for the
absorption rotation-translation coupling is dis-
cussed in detail in Ref. 16. This coupling mecha-
nism is between the internal degrees of rotation of
the diatomic molecule and the translational motion

P. D. MANNHEIM AND S. S.
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of its center of charge inthe cell potential of the
neighbors, i.e., coupling between the rotation and
the phonon states. The absorption coefficient de-
termined in Ref. 16 is

1 1 2()
w-2B "rw+2B) V@)

(50)
where B is the rotational constant of the molecule.
Thus in the limit 7w > 2B we again obtain an w*factor.

To conclude we would like to express the opinion
that Eqs. (8) and (50) provide us with a quite power-
ful way of obtaining information about the density of
states of pure crystals. By choosing a variety of
probes it should be possible to isolate the critical
points in the phonon spectra. One particularly
amusing proposal is to use H; and HD as defects.
The force changes are the same in the two cases,
but the absorption mechanisms are completely dif-
ferent. H, will give an induced-dipole-moment
spectrum [Eq. (8)], whereas HD will give the
permanent-dipole-moment spectrum of Eq. (50),
and yet the only differences (apart from the over-all
scale) will be due to the known HD rotational constant.

K(w)~M"2N| x¥(0, w?)| w6<ﬁ
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